1,825 research outputs found

    A study of disordered systems with gain: Stochastic Amplification

    Get PDF
    A study of statistics of transmission and reflection from a random medium with stochastic amplification as opposed to coherent amplification is presented. It is found that the transmission coefficient tt, for sample length LL less than the critical length LcL_c grows exponentially with LL. In the limit LL \to \infty transmission decays exponentially as \avg{lnt} = -L/\xi where ξ\xi is the localization length. In this limit reflection coefficient rr saturates to a fixed value which shows a monotonic increase as a function of strength of amplification α\alpha. The stationary distribution of super-reflection coefficient agrees well with the analytical results obtained within the random phase approximation (RPA). Our model also exhibits the well known duality between absorption and amplification. We emphasize the major differences between coherent amplification and stochastic amplification where-ever appropriate.Comment: 7 pages RevTex, two column format, 9 eps figures included mpeg simulations at http://www.iopb.res.in/~joshi/mpg.htm

    Quantum Stochastic Absorption

    Get PDF
    We report a detailed and systematic study of wave propagation through a stochastic absorbing random medium. Stochastic absorption is modeled by introducing an attenuation constant per unit length α\alpha in the free propagation region of the one-dimensional disordered chain of delta function scatterers. The average value of the logarithm of transmission coefficient decreases linearly with the length of the sample. The localization length is given by ξ = ξwξα/(ξw+ξα)\xi ~ = ~ \xi_w \xi_\alpha / (\xi_w + \xi_\alpha), where ξw\xi_w and ξα\xi_\alpha are the localization lengths in the presence of only disorder and of only absorption respectively. Absorption does not introduce any additional reflection in the limit of large α\alpha, i.e., reflection shows a monotonic decrease with α\alpha and tends to zero in the limit of α\alpha\to\infty, in contrast to the behavior observed in case of coherent absorption. The stationary distribution of reflection coefficient agrees well with the analytical results obtained within random phase approximation (RPA) in a larger parameter space. We also emphasize the major differences between the results of stochastic and coherent absorption.Comment: RevTex, 6 pages,2 column format, 9 .eps figures include

    Modelling of Stochastic Absorption in a Random Medium

    Get PDF
    We report a detailed and systematic study of wave propagation through a stochastic absorbing random medium. Stochastic absorption is modeled by introducing an attenuation constant per unit length α\alpha in the free propagation region of the one-dimensional disordered chain of delta function scatterers. The average value of the logarithm of transmission coefficient decreases linearly with the length of the sample. The localization length is given by ξ = ξwξα/(ξw+ξα)\xi ~ = ~ \xi_w \xi_\alpha / (\xi_w + \xi_\alpha), where ξw\xi_w and ξα\xi_\alpha are the localization lengths in the presence of only disorder and of only absorption respectively. Absorption does not introduce any additional reflection in the limit of large α\alpha, i.e., reflection shows a monotonic decrease with α\alpha and tends to zero in the limit of α\alpha\to\infty, in contrast to the behavior observed in case of coherent absorption. The stationary distribution of reflection coefficient agrees well with the analytical results obtained within random phase approximation (RPA) in a larger parameter space. We also emphasize the major differences between the results of stochastic and coherent absorption.Comment: 7 pages RevTex, 9 eps figures included, modified version of cond-mat/9909327, to appear in PRB, mpeg simulations at http://www.iopb.res.in/~joshi/mpg.htm

    Dephasing of Aharonov-Bohm oscillations in a mesoscopic ring with a magnetic impurity

    Get PDF
    We present a detailed analysis of the Aharonov-Bohm interference oscillations manifested through transmission of an electron in a mesoscopic ring with a magnetic impurity atom inserted in one of its arms. The electron interacts with the impurity through the exchange interaction leading to exchange spin-flip scattering. Transmission in the spin-flipped and spin-unflipped channels are explicitly calculated. We show that the spin-flipper acts as a dephasor in spite of absence of any inelastic scattering. The spin-conductance (related to spin-polarized transmission coefficient) is asymmetric in the flux reversal as opposed to the two probe conductance which is symmetric under flux reversal.Comment: 4 pages RevTex, 6 figures, brief repor

    Loss of interference in an Aharonov-Bohm ring

    Get PDF
    We study a simple model of dephasing of Aharonov-Bohm oscillations in the transmission of an electron across a mesoscopic ring. A magnetic impurity in one of the arms of the ring couples to the electron spin via an exchange interaction. This interaction leads to spin flip scattering and induces dephasing via entanglement. This is akin to the models evoked earlier to explain destruction of interference due to which-path information in double-slit experiments. Total transmission is found to be symmetric under flux reversal but not the spin polarization.Comment: 4 pages, latex/revtex, 4 eps figures. Proceedings of CMDAYS2K, held at Guru Ghasidas University, Bilaspur, Chattisgarh, India, Aug 29-31, 2

    Wave propagation through a coherently amplifying random medium

    Get PDF
    We report a detailed and systematic numerical study of wave propagation through a coherently amplifying random one-dimensional medium. The coherent amplification is modeled by introducing a uniform imaginary part in the site energies of the disordered single-band tight binding Hamiltonian. Several distinct length scales (regimes), most of them new, are identified from the behavior of transmittance and reflectance as a function of the material parameters. We show that the transmittance is a non-self-averaging quantity with a well defined mean value. The stationary distribution of the super reflection differs qualitatively from the analytical results obtained within the random phase approximation in strong disorder and amplification regime. The study of the stationary distribution of the phase of the reflected wave reveals the reason for this discrepancy. The applicability of random phase approximation is discussed. We emphasize the dual role played by the lasing medium, as an amplifier as well as a reflector.Comment: 33 pages RevTex, 14 EPS figures included, Accepted for publication in IJMP-

    Role of quantum entanglement due to a magnetic impurity on current magnification effect in mesoscopic open rings

    Get PDF
    We study the current magnification effect in presence of exchange scattering of electron from a magnetic impurity placed in one arm of an open mesoscopic ring. The exchange interaction causes entanglement of electron spin and impurity spin. Earlier studies have shown that such an entanglement causes reduction or loss of interference in the Aharonov-Bohm oscillations leading to decoherence. We find however, that this entanglement, in contradiction to the naive expectation of a reduction of current magnification, leads to enhancement as well as suppression of the effect. We also observe additional novel features like new resonances and current reversals.Comment: 5 pages RevTex, 5 figures include

    Transport and Wigner Delay Time Distribution Across a Random Active Medium

    Get PDF

    Wigner delay time from a random passive and active medium

    Full text link
    We consider the scattering of electron by a one-dimensional random potential (both passive and active medium) and numerically obtain the probability distribution of Wigner delay time (τ\tau). We show that in a passive medium our probability distribution agrees with the earlier analytical results based on random phase approximation. We have extended our study to the strong disorder limit, where random phase approximation breaks down. The delay time distribution exhibits the long time tail (1/τ21/\tau^2) due to resonant states, which is independent of the nature of disorder indicating the universality of the tail of the delay time distribution. In the presence of coherent absorption (active medium) we show that the long time tail is suppressed exponentially due to the fact that the particles whose trajectories traverse long distances in the medium are absorbed and are unlikely to be reflected.Comment: 13 pages RevTex, 5 EPS figures included, communicated to PR
    corecore